CALCULATION OF VISCOUS AND PLASTIC PROPERTIES
BY THE SOLUTION OF WAVE PROBLEMS
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Models of elastoplastic media are applied to soils and rocks [1, 2]. In conformity with ex-
perimental data [3-5] a model of soils and rocks as a viscoplastic medium has been proposed
[6]. Below we give a solution, based on this model, of the problem on the propagation of a
plane one-dimensional wave, As the basis of computer programs we propose a finite-differ-
ence representation of the equations of motion of a continuous medium in Lagrange coordi-
nates and the differential equations governing the behavior of the medium. A "direct calcu-
lation" procedure with pseudoviscosity is applied. It is shown that the damping of plane
waves is connected with two energy-dissipating mechanisms, determined by the viscous and
plastic properties of the medium. The washing out of a discontinuity can occur in the ab-
sence of a segment of the dynamical compression curve that is concave to the strain axis,
Under certain conditions the maximum strain is attained during the phase of decreasing
stress. These results agree with the experimental data [3].

1. Soil is regarded as a medium consisting of solid mineral grains, cemented together by salt
films and aqueous films. Under shock loading a strain £, appears instantaneously, due to the compression
of the material of the films and of the material of the grains themselves, and due also to the displacement
of the grains that are in the least stable positions. Values of this strain lie on the diagram of dynamical
compression of the medium

o = Epg, (1.1)

The strain €, is assumed to be partially reversible — upon a decrease in the loading the volume is
restored on account of the unloading of the material of the films and the grains. With a decrease in the load-
ing from o

6 — 0y =FEp(e, — &), & = 0y /Ep, Er > Ep (1.2)

Under the action of the loading, a strain &, occurs after a finite time, connected with the shifting and
repacking of the grains. The magnitude of €, is determined by the expression

0 = E., + 0k, 1.3)
where 71 is the viscosity coefficient of the medium.

The limiting value of the overall deformation € of the soil with o=const and t — © lies on the static
compression diagram

e =8 + &, 0=LFEg 1.4)
Ep™ + E,7 = Es™' (1.5)

The magnitude of E, is determined from experimental values of Eyy and Eg.

The repacking strain &, is assumed to be irreversible, since the air that is contained in the pores
cannot overcome the force of friction between the particles and return them to their original positions when

the loading is removed.
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Z A schematic drawing of an element is given in Fig. 1. If the strain
; of the dash pot and the springs 1and2 are reversible this is a viscoelastic
model; with irreversibility of the strains of spring 2 and the dash pot we
have a viscoplastic model, Within the framework of the viscoplastic model
the strain of spring 1 can be completely or partially reversible,

Fig, 1 : We shall discuss the equation that determines the behavior of an ele-
ment of the medium. At the shock front

e=1¢g =0,/ FEp (1.6)
For a continuous increase in the stress we obtain from (1.3) and (1.6)
€+ pe=205/Ep+pus/Es, p=E,/n (1.7)

A similar equation was obtained earlier by A. Yu. Ishlinskii [7].
For a viscoelastic medium Eq. (1.7) is also valid when the stress decreases.
When the stress decreases in a viscoplastic medium, ¢ decreases according to the equation
g = g4 + (0 — 0,) /| Ep (1.8)
where £x andox are the maximum values of €, and o, attainedin the element of the mediuxﬁ, respectively.
The behavior of the medium is determined by an equation that follows from (1.3) and (1.8)
& + ue = 6Ep™' + po (Es™ — Ep~t + Ep™) + poy (Ep~'— Er™) (1.9)

After the maximum strain ¢ is attained, it is assumed that &€,=const, while ¢, decreases according
to (1.8). The behavior of the medium is determined by the equation

Egpi = & (1.10)

We shall employ Lagrange variables: the mass h, and the time t, The wave is caused by a loading
acting on the free surface of a half-space. On this section, that is assumed to move beyond the initial sec-
tion, the loading increases by a jump to the value oy, at t=0, and thereafter varies according to the equa-~
tions

6=0,1—1/8), 0<{t<CH, 0=0, 01t (1.11)
A shock front propagates from the initial section with the velocity
A = (Eppo)t:
where p; is the initial density of the medium.
In front of the shock front
=0, u=0, p=0p,
The equation of the trajectory of the front in the h, t plane is
h = At
The flow behind the front is determined by the fundamental equations of motion

u o o ou a5 _ : 112
o~ =% =0 » (12

This system is closed by equations determining the behavior of the medium, which are taken as those
determined by the instantaneous state of the medium in the form (1.6), (1.7), (1.9), and (1.10).

The boundary conditions are: on the initial section c=0p,(1—t/6) and on the line h= At we have o4 =
Auy. The asterisks indicate that the corresponding quantities are taken for a particle with the coordinate
h at the time t=h/A. We convert to the dimensionless quantities

vT=pt z=yph/A, =00, u=u/u,, & ==¢tls, (1,13)
um:"‘am/Av smzsm/ED
and we use the notations

Y=EFEp/Es, B=Ep/Egp &=pp
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In terms of the new variables the equations of motion are

o _o e e 1.14
Fta =0 Hts=0 @14

The equations determining the behavior of the medium are
&+ & =&+ yo°
Et =L+ (p+B—1)+at—p (1.15)
éo — ﬂso
In dimensionless form the loading on the initial section is

=1~/ 0L T<A
°=0, T>A
The condition at the shock front for x=7

o] )

g = —1u

The circular superscripts, denoting dimensionless quantities, will be dropped in what follows,

The solution is determined by the assignment of values to the seven dimensional parameters oy, Epy,
Eg, ER, pg. 4, 6. In the transition to the dimensionless parameters we have chosen, the number of deter-
mining parameters was reducedtothree v, 8, A. This is connected withthe linearity of the equations determining
the behavior of the medium. This reduction in the number of parameters makes it possible to apply the
results of one computer calculation to a number of media and initial conditions.

For the numerical solution of the system (1.14), (1.15) the "cross" difference scheme [8] was em-~
ployed. A scheme of this type has been applied in [9] for the description of one-dimensional motion of a
gas and of an elastoplastic material. The solution is sought on a mesh that is uniform with respect to x
and nonuniform with respect to 7. There are spatial and temporal layers of the mesh with integral and
half-integral numbers. The quantity u is determined at points that have numbers that are half-integral for
time and integral for space; the quantities o and € at points with numbers that are integral for time and
half-integral for space. The difference equations have the form

nitz on-i n- n—4fy N4l
uy _ Sy 03—1 — )y + Gy (1.16)
At® - Ar .
+ 1) Tt
Sy Gl M — Y (1.17)
At Ax ’
Nl L. N N4 n n+1 ‘n
Sj4is — Sjar, 8jviy — g1y Sjiy + Sjay, ]+”z + 7+‘
= 1q +a ta (1.18)
Ayt b T Al z 2 3 4 :

The equations of continuity and momentum are approximated in a way similar to that in [8, 9]. Equa-
tion (1.18) approximates the deformation law of the material (1.14), (1.15). The quantities a,, a,, a3, oy are
the coefficients associated with €, o, €, and the free term in Eqs. (1.14)-(1.15) respectively. In (1.16) q is
the Neumann—Richtmyer quadratic pseudoviscosity [10] '

€l — ul-tiyp
n_u j+1 for
—~—_———.—-—————— u s u »
' - i <lUj
s 1+(8+1/+3n+111)/2

gile=0 for uja > uj ' © o (1.19)

F+s
The presence of the pseudoviscosity in Eq. (1.16) causes a replacement of sharp shock fronts with
zones of continuous variation of the parameters, values of the parameters at the boundaries of this zone
being related by the jump conditions. Values of the constant Cq are bounded from above by the requirement
that the width of the washing-out zone be small and from below by the requirement on smallness of pertur-
bations arising because of the use of this particular calculational procedure, not through any inherent con-
nection with the physics of the process, The value Cq =0.6.

The system (1.16)-(1.18) approximates (1.14) and (1.15) to second-order accuracy. This followsfrom
results of inserting Taylor series expansions of the unknown functions near the points (xj, 7 0y and (xJ +1/2
M +1/2) into (1.16) and (1.17), respectively.

On each temporal layer sequential calculations are made of 0n+1 =1—-70F1/A, 8111/';1 by (L.18), ul+1/2
by (1.17), thenforj=1 u’%“/ by (1.16), 851:1’/2 by (1.17), aj“+1 Ja by (1. 18), q?:f//z? by (1.19), and finally

AT ¥/2 gng A‘rn“-(ATnﬂ/ 2. AT *3/2) /2 by the stability condition, obtained by the method of freezing
the coefficients [8].
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In order to calculate the accuracy of the numerical method the

&

< same variant was worked out on meshes with steps Ax and Ax/2.
2.8 \\ - For small values of x the width of the washing-out zone was re-

7

\ duced to half when calculations were made with the finer mesh, while
\’ values of the stress and the velocity of the wave remained the same,
X For large x the width of the washing-out zone and the other param-
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eters did not change. This indicates that the washing out of the dis-.
continuity is the result of the model of the medium that takes viscosity
properties into account, and not the result of the method of calculation
involving the introduction of pseudoviscosity. In the solution of a sim-
ilar problem by the method of characteristics, when the discontinuity
was calculated accurately, the washing out of the latter in a medium
having viscous properties was also obtained.

V] 20 0 z 2. Six variants, differing in the values of A, v, and B8, were cal-
Fig. 2 culated by computer:

Variant Y A 8

1 50 0.
50 0.

50 0.
0.

0.

1

5
© 0.5
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\\\ \I ] Having this many variants one can analyze the influence of val-
a4 ues of 2, v, and B on the parameters of the wave,
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As follows from calculation, a number of regions in the xT plane
emerge during the passage of the wave: 1) the undisturbed medium,
2) increase in stress and strain, 3) decrease in stress and increase
in strain, 4) decrease in stress and strain,

Fig. 3 The boundaries of the regions are: 1, 2) wave front, correspond-
ing to the jump in o and €; 2, 3) maximum stress; 3, 4) maximum
strain.

The configuration of the regions changes, depending on the values of A, vy, and 8.

Figure 2 shows plots of the dependence of the maximum stress on the distance, The numeration of
the plots corresponds to the sequence of variants given above, A comparison of plots 1-3 shows that the
waves are extinguished more rapidly with increasing y. Physically an augmentation of v corresponds to
an increase in the deviation of the static compression diagram from the dynamical compression diagram,
which is due to the more complete manifestation of the viscous properties of the medium.

It is advisable to make a comparison of plots 2-5 according to two interpretations, for u=const or
for 8=const. We put u =1000 sec”!, Then A is equal to 50, 5, and 0.5, corresponding to 6 equal to 0.05,
0.005, and 0.0005 sec, From the plots it follows that with a decrease in 8 the rate at which the stress at-
tenuates with distance increases, that is, short waves die out more rapidly. We now hold & constant. et
6=0.05 sec. Then values of A equal to 50, 5, and 0.5 correspond to values ¢ equal to 1000, 100, and 10
sec”!, The variation in u results in a variation in the scale of the spatial coordinate. From the condition
x/u=h/A it follows that the section x=10 corresponds to one and the same value of h/A, equal to 1073, 1072,
and 1071 sec for the three values of u. Taking this variation in scale into consideration, we obtain the re~
sult, on comparing plots 2, 4, 5, that with an increase in y the waves die out more rapidly. Values p=500-
10600 sec™! correspond to loose soils [3].

We shall discuss the time variation of o, €, u at fixed points of the medium, Figures 3~5 show plots
of the time dependence of the dimensionless stress for A=50 and v equal to 1.1, 2, and 4, respectively. In
all cases the plots labeled with the numbers 1-5 refer to sections of the medium with coordinates 0, 5, 10,
20, and 40, respectively. Comparison of the plots shows that an increase in vy results in a slower rise of
the stress to its maximum value and consequently to a more rapid conversion of the wave from a shock
wave to a continuous one,

Figures 6 and 7 give plots of €¢r) and u(r) for A =50 and y=2 at the same sections. ¥rom a compari-
son of the plots for the stress and the strain (Figs, 4 and 6) it follows that maximum strain is attained dur-
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ing the phase of diminishing stress. An increase in y from 2 to 4 results
in an increase in the maximum strain from 1.88 to 3.7, (The plot for

v =4 is not given.) This is connected with the increase in the compress-
ibility of the medium with an increase in 7.
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\> 3. We shall not compare the wave parameters in plastic and visco-

g plastic media., We use the model of a plastic medium, in which the load-

ing occurs along the line 0=Et and the unloading along the line o—oy, =

ER(E—€y,). This model is the limit case of the model applicable to a
viscoplastic medium, corresponding to Eg—~Ep or p—0. An analytic

7 solution of the problem on the propagation of a plane wave in such a me-

/A

S =

g 2 w0 w7 dium, producedby a loading whose variation in the initial section isgiven
h .
Fig. 6 by the equations
c=0, t<<0
‘S . c=0a,(1 —1]0), 0<<t<C0
28 150 c=0, t>0, (3.1)
iy
T N \\ has been obtained earlier [6].
T : . , " ,
— In this case the maximum stress in the medium at the wavefront is
0 ] [ given in terms of the variables h and t by the expressions
2 w60 M 7 _
Fig. 7 s Agt— A h Ap
?1;"*1"_24123 6, W<AR-—A 3.2)
s Ap—A4 1 Ap—AP® Ap < h < (Ap + A) Ap
Sm A+ 4 ( T T 2Az _A'B_)’ A, —A =740 = (A — AP
s _ (Ap—AP (Ap— AP (A~ 4 h (Ap+ ) Ag
m | (Ap— AR [ T T2AAR (A, F A) "ATG']’ A0 F (A — Ay (3.3)

A= (Epp))r, Agr = (Erpy)*,- (3.4)

Figure 2 shows plots 7 and 8, constructed according to these equations for the case AR=1/'2'A, i.e.,
8=0.5. Here plots 7 and 8 refer to the limit case (y —1) of variants 2 and 4. The plot for a plastic me-
dium, corresponding to variant 5, is not given, as it is practically identical with these plots. With a de-
crease in A the plots for plastic and viscoplastic media approach each other.

Thus, calculations show that waves die out faster in viscoplastic media than they do in plastic media,
This is connected with the fact that there are additional energy losses. Taking account of viscosity also
results in a change in the waveprofile — a conversion ofthe shock wave into a confinuous compression wave,
The maximum of the strain does not coincide with the maximum of the stress; it is attained during the
phase of diminishing stress. The extent to which viscous properties influence the phenomena depends on
the parameters A, v, and 8. With an increase in A and y the influence of viscosity increases. For p —0
or for Ep —Eg the medium becomes plastic. A decrease in $ corresponds to an increase in the influence
of the plastic properties of the medium. It results in a more rapid extinction of waves both in plastic and
in viscoplastic media. These results agree with eiperimental data.

The authors thank S, S, Grigoryan for his discussion of the work.
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